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ABSTRACT
il s sheuan

The Schwinger Variational Principle is applied to s-wave electron-hydrogen atom scattering. We
show computationally, that, consistent with a recent paper by B. Apagyi, P. Levay, and K. Ladanyi®,-
there are pseudo-resonances at the static exchange level of approximation, but not at the static level.
We employed the T-matrix as well as the K-matrix version of the Schwinger Principle, with a real Slater
basis, and obtained the same results in both. We are able to identify the origin of the pseudo-resonances W
as resulting from singularities in the separable potential that is effectively employed in the Lippman- M«\Mf*x.‘k
Schwinger equation from which the Schwinger Variational Principle can be derived. The determination >
of the pseudo-resonance parameters from the separable potential is computationally inexpensive and
may be used to predict the pseudo-resonance parameters for the scattering calculations so that they
may be avoided. |
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THE PREDICTION OF PSEUDO-RESONANCE POSITIONS IN
THE SCHWINGER VARIATIONAL PRINCIPLE

Rationale

The present work is a computational study of electron scattering from atomic hydrogen in its
ground electronic state. We are studying this system using the Schwinger Variational Principle (SVP).
This system has been studied many times before at a very high level of accuracy. ! It is not our intent
to study e~ + H just for the cross section data that result, but rather to study this system as a model
system to explore some of the subtle aspects of the SVP. We are primarily interested in electron-mol-
ecule collisions where L? basis set methods, such as the SVP, have shown the greatest utility, especially
for processes such as electronic excitation and dissociative recombination.

However, there are a number of problems that are encountered in using the SVP. In particular,
two recent papers 23 have shown that, contrary to the prevalent belief 4 the SVP does encounter
pseudo-resonances, even in the simples-wave €™ + Hsystem, so long as the exchange effect is included.
Indeed, it is necessary to have an energy dependent potential in order to see these pseudo-resonances.
At the static level, the pseudo-résonances are not encountered in the SVP, in contrast to the Kohn
Variational Principle 3 (KVP) where they are encountered even at the static level.

This fact apparently led many researchers 48 to conclude that the SVP did not suffer from the
occurrence of pseudo-resonances. The argument that was used to explain the assumed non-occurrence
of pseudo-resonances in the SVP is based on the paper of Adhikari and Sloan 7 who show that the
derivation of the SVP, from the Lippman-Schwinger equation by taking the variations of the wavefunc-
tion and deleting second order terms, is equivalent to approximating the exact gotentia] in the
Lippman-Schwinger equation, by the projection of the exact potential onto an L basis set, thus
producing a finite rank separable approximation to the exact potential. It was then argued that the SVP
implementation was equivalent to solving the Lippman-Schwinger equation exactly for a certain
separable potential, and since the solution was exact, no spurious resonances would occur in the
solution. This, as it turned out, was true, but a somewhat subtle flaw in the argument leads to
pseudo-resonances anyway. We shall presently elaborate.

These false resonances are non-physical. This is especially troubling since resonance processcs
have turned out to be the predominant mechanism by which molecules are excited and by which
molecules dissociate upon scattering by electrons. It is, therefore, extremely important to distinguish
the real resonances from the pseudo resonances.

Thus, in order to study the origin and characteristics of these resonances, it is fortuitous to
encounter them in so simple a system ass-wave e~ + H, at the static exchange level 2 (static + exchange
potential). We therefore decided not only to repeat the calculation of Ref. 2, but also to perform the
calculation using the T-matrix approach, as well as the K-matrix approach, in contrast to the authors of
Ref. 2 and 3. In doing so, several interesting aspects of the use of the SVP were studied and the origin
of the pseudo resonances was explained.
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Sketch Of The Theory
The theory for the K-matrix version of the calculation is given rather completely in Ref. 1. We
shall just limit our description of the theory to certain fundamental points that are useful to define the
differences in our work from Ref. 1 and to facilitate the explanation of our conclusions. We are solving
the time-independent Shrodinger equation, for electron-H atom scattering, which, in atomic units, is
HW(A,77) = EY(,72) )

where H is the Hamiltonian operator given by

=-lyz _1lgz .1 1 1
H==3Vi-3Vt ~y ~ 5 YT =7T 2
and where W is the system wavefunction. We then employ the basic idea of the close-coupling method

which is to expand the total wavefunction W in target states. 2> We then obtain, in standard fashion of
the close-coupling method, the following static exchange equation for the continuum orbital F

(V2 +KF(P) = UPHFE) + (-1 (K |F) 3)
where k is the projectile momentum, U is the static potential, and Kis the exchange kernel. The symbol
s is O for singlet scattering and 1 for triplet scattering. F of Eq. (3) is required to satisfy the standard
time-independent scattering boundary conditions ° of incoming plane waves and outgoing spherical
waves.

We then expand the continuum orbital in partial waves according to
F() = D fi(OYT'(6,8). (4)
Im

We just keep the ! = 0 term in Eq. (4); hence, we are considering only s-wave scattering. Thus the model
is simple but realistic. Then, the partial s-wave continuum orbital f, satisfies the K-matrix boundary
conditions given by

lim f(r) =A® Ok + B® GP(kr) (5)

liad 4
where the K-matrix is given by

K =tan(d) = B®/4®, (6)
The T-matrix boundary conditions are given by

lim f(r) =ADPGOWUr) + BOH™M (k) (7

[ g

where the T-matrix is given by
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T = é’sin(8) = BD/4D, (8)
The G and G® are related to the spherical Bessel functions by

GO(kr) = kajo (k) ©)
and

GO(kry = —kmy (kr) (10)

where jo is the = 0 regular Bessel function and no is the / = 0 irregular spherical Bessel function. Also,
H™) is the Hankel function of the first kind given by

H®kr) = GOkr) +iGO(kr). (11)

The static exchange differential equation for s-wave scattering is then changed into an integral
equation, in standard fashion, which is called the Lippman-Schwinger equation, and is given by

fry =we -
3 [aymOean®es)y [ e vion fo) (12)
where the w functions are related to the Gs by
wih(r) = GOkr)

wA(r) =GOy +BGD(kr) (13)

where 8 =0 for the K-matrix case and 8 =i for the T-matrix case. In Eq. (12), V* is the sum of the static
and exchange potential so that

Viyx) = U@d —y) + (=17 Kexy) (14)
Then, we have?
D = -1 WOV f) (15)
where D is either the K- or T-matrix depending on the form of w? in Egs. (12) and (13).
Then we expand f in a Slater basis set
$n(ar) =1 "le” (16)

according to



f@r) =, Cngn(ar) 17

We then proceed in a standard fashion which may be taken from Ref. 6 or 7 or from many other
places. We then obtain the following set of working equations:

D=-CM1C (18)
where

Crn = WD |V |¢m) (19)
and

Mpn = (@m |V =V 8V |¢n) (20)

In Eq. (21), £'is the reduced Green’s function operator. Its form can be inferred by rewriting Eq.
(12) in Dirac notation

1f)=1wD)+gV* If) 2y

and comparing Eq. (21) and (12).

Results and Conclusions
The M of Eq. (18) can be written as
M = Mg +8M; (22)
where 8 =0 if we are using the K-matrix form and 8 =i if we are using the T-matrix form. One of the

surprising results of the present work is that M; is explicitly singular and cannot be inverted. This does
not mean that M is singular, since we can use the following results. If, in general,

M=A +iB (23)
and

M '=C+iD (23)
then

C =[4 +BA™'B]™ (24
and
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D=-cBa™’ (25)

However, if B is singular, then, as the size of the matrices increases, the accuracy with which
M lcanbe computed decreases until the inverse is no longer accurate. In fact, for any matrix size, the
inverse is somewhat corrupted. The accuracy of the inverse computation can be tested by constructing
the unit matrix. Also, the results can be compared with the K-matrix result where there is no M;. The
agreement between the phaseshifts decreases as the basis set size increases. On a 64 bit word length
computer, however, the agreement was still eight significant figures for a 15x15 matrix. We would like
to note that we attempted to alleviate this problem by using an orthogonalized basis set instead of the
¢s of Eq. (16). This improved the agreement between the K-matrix and the T-matrix phaseshifts by one
to two significant figures, but did not alleviate the problem. The conclusion to be drawn from these
results seems to be that there is no point in using the T-matrix form if real basis functions are to be used.

Pseudo-resonances are encountered, just as in Ref. 2, for both the K-matrix and T-matrix forms.
A surprising result, however, was that Mg is not singular until the energy is very near the pseudo-reso-
nance energy. You have to be right on top of the pseudo -resonance energy before you lose the ability
to compute Mg . This is quite different from our experience with the Kohn anomalies. ® The explana-
tion for this and for the existence of the pseudo-resonances can be understood by considering the
argument given above in the Rationale for the supposed non-existence of the pseudo-resonances in
the SVP. The finite rank potential that is substituted into the Lippman-Schwinger equation is given by

=V |3)A@ |V (26)

where

T =(F V) (27)

If V*is energy independent (static potential), then V' *? is well behaved. If V' * is energy dependent,
then there are going to be energies where A does not exist. In other words, the phase shift that we are
computing is indeed the exact phase shift for the separable potential ¥ *7. The problem is, the separable
potential is non-physical at energies where A does not exist.

We have now investigated the energy dependence of A to see if the energies where pseudo-reso-
nances occur are related in an identifiable way to the energies where the separable potential does not
exist. The central result of this paper is the finding that they are exactly the same energies. Thus, we
can predict the energy positions of the pseudo-resonances before we run the scattering calculation, and
thus avoid the troublesome energies. This ability is aided by the fact that the pseudo-resonances are
very narrow and become more narrow as the basis set size increases.
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